Valuation rings are derived splinters
نویسندگان
چکیده
We give three proofs that valuation rings are derived splinters: a geometric proof using absolute integral closure, homological which reduces the problem to checking splinters (which is done in second author’s PhD thesis and we reprise here), by approximation Bhatt’s of direct summand conjecture. The property also shows smooth algebras over splinters.
منابع مشابه
Pseudo-almost valuation rings
The aim of this paper is to generalize thenotion of pseudo-almost valuation domains to arbitrary commutative rings. It is shown that the classes of chained rings and pseudo-valuation rings are properly contained in the class of pseudo-almost valuation rings; also the class of pseudo-almost valuation rings is properly contained in the class of quasi-local rings with linearly ordere...
متن کاملAlmost valuation rings
The aim of this paper is to generalize the notion of almost valuation domains to arbitrary commutative rings. Also, we consider relations between almost valuation rings and pseudo-almost valuation rings. We prove that the class of almost valuation rings is properly contained in the class of pseudo-almost valuation rings. Among the properties of almost valuation rings, we sh...
متن کاملReal closed valuation rings
The real closed valuation rings, i.e., convex subrings of real closed fields, form a proper subclass of the class of real closed domains. It is shown how one can recognize whether a real closed domain is a valuation ring. This leads to a characterization of the totally ordered domains whose real closure is a valuation ring. Real closures of totally ordered factor rings of coordinate rings of re...
متن کاملDefinable Henselian Valuation Rings
We give model theoretic criteria for the existence of∃∀ and∀∃formulas in the ring language to define uniformly the valuation rings O of models (K,O) of an elementary theory Σ of henselian valued fields. As one of the applications we obtain the existence of an ∃∀-formula defining uniformly the valuation rings O of valued henselian fields (K,O) whose residue class field k is finite, pseudofinite,...
متن کاملLocal rings of bounded module type are almost maximal valuation rings
It is shown that every commutative local ring of bounded module type is an almost maximal valuation ring. We say that an associative commutative unitary ring R is of bounded module type if there exists a positive integer n such that every finitely generated R-module is a direct sum of submodules generated by at most n elements. For instance, every Dedekind domain has bounded module type with bo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Zeitschrift
سال: 2021
ISSN: ['1432-1823', '0025-5874']
DOI: https://doi.org/10.1007/s00209-020-02683-6